
Nickel-Catalyzed Cross-Coupling of Aryl Fluorides and Organozinc Reagents

Feng Zhu and Zhong-Xia Wang*

CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

Supporting Information

ABSTRACT: Ni $(PCy_3)_2Cl_2$ was demonstrated to effectively catalyze crosscoupling of aryl fluorides and organozinc reagents. Both electron-poor and R -rich aryl fluorides can react effectively with nucleophiles including aryl-, methyl-, and benzylzinc chlorides. A wide range of substituents and functional groups are tolerated. In the presence of a directing group, PhC(O), the

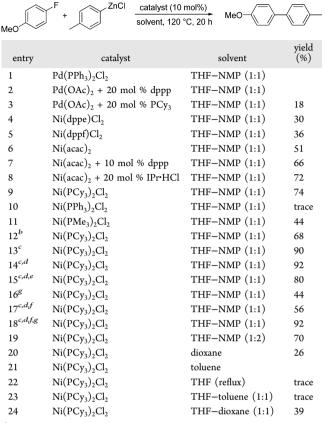
 $\frac{\text{hol}\%}{\text{b0 °C}} \qquad R \stackrel{\text{fi}}{\text{li}} \qquad \text{Rec}$

Featured Article

pubs.acs.org/joc

reaction is selective for cleavage of the C-F bond ortho to the carbonyl substituent in a diffuoroarene.

INTRODUCTION


Transition-metal-catalyzed activation and transformation of C-F bonds have received considerable attention over the years.¹ On one hand, fluorine forms the strongest known single bond to carbon. The conversion of organic fluorides is important for the fundamental understanding of the reactivity of very stable chemical bonds. On the other hand, activation of the carbonfluorine bond is of importance for selective transformation of polyfluorinated compounds to partially fluorinated compounds which offer potential use in drug discovery and materials science.^{1,2} The catalytic transformation of C–F bonds such as hydrodefluorination,^{1e} C–C coupling,^{1,3–7} C–N coupling,⁸ and C-S coupling⁹ of fluoride substrates has been reported. The reported C-C cross coupling includes Kumada coupling,3 Negishi coupling,^{1d,4} Suzuki coupling,⁵ Stille coupling,⁶ and Sonogashira coupling.⁷ Among them, Kumada coupling of aryl fluorides appeared at very early stages of cross-coupling investigations, and subsequent studies also occurred more often than studies of other types of cross-coupling reactions. Negishi cross-coupling of aryl fluorides appeared relatively late, and only electron-poor fluoride substrates were successfully coupled. In addition, several Negishi cross-coupling reactions containing selective C-F bond activation of polyfluoroarenes for synthesis of partially fluorinated aromatics have been performed.^{1d,4c-i} For example, Love et al. carried out platinumcatalyzed cross-coupling of polyfluoroarylimines with dimethylzinc in which the C-F bonds *ortho* to an imine substituent are selectively cleaved.^{4d-f} Nakamura et al. performed nickelcatalyzed monosubstitution of polyfluoroarenes with organozinc reagents using alkoxydiphosphine ligand.^{4c} Ogoshi et al. reported similar work using palladium(0)/PCy₃ catalyst.^{4g} In our exploration of C-F bond activation we found that commercially available Ni(PCy₃)₂Cl₂ is an effective catalyst that can catalyze cross-coupling of activated and deactivated aryl fluorides with arylzinc reagents or β -hydrogen-free alkylzinc reagents and selective activation of C-F bonds in (2,5-difluorophenyl)(phenyl)methanone. Herein we report the results.

RESULTS AND DISCUSSION

We first screened the catalysts, solvents, and other reaction conditions using a model reaction between p-FC₆H₄OMe and 2.5 equiv of p-MeC₆H₄ZnCl prepared from p-MeC₆H₄Li and ZnCl₂ (Table 1). It has been reported that a 1:1 mixture of THF and NMP is a suitable solvent for cross-coupling of arylzinc reagents and aryl chlorides. We also employed 1:1 THF-NMP as the solvent to screen catalysts. Pd(PPh₃)₂Cl₂ and $Pd(OAc)_2/dppp$ cannot give the desired products. $Pd(OAc)_2/PCy_3$ led to the corresponding cross-coupling product in low yield (Table 1, entries 1-3). Nickel complexes such as Ni(dppe)Cl₂ and Ni(dppf)Cl₂ gave better results compared with those mentioned above (Table 1, entries 4 and 5). This led us to explore nickel catalyts systematically. $Ni(acac)_2$ alone or a combination of $Ni(acac)_2$ and dppp or IPr·HCl was found to lead to the coupling product in 51%-72% yields (Table 1, entries 6-8). Ni(PCy₃)₂Cl₂ displayed a better catalytic activity, resulting in 74% yield of coupling product. By contrast, Ni(PPh₃)₂Cl₂ was inactive, and Ni- $(PMe_3)_2Cl_2$ led to relatively low product yield (Table 1, entries 9-11). From the screened results it seems that an electron-rich ligand such as PCy₃ and IPr is better for the activation of C-F bonds. This may be because an electron-rich metal center is beneficial to the oxidative addition of the aryl fluoride. When 1.5 equiv of *p*-MeC₆H₄ZnCl were employed, the product yield decreased to 68% (Table 1, entry 12). However, if an additional 1 equiv of p-MeC₆H₄ZnCl was added after the reaction of p-FC₆H₄OMe and 1.5 equiv of p-MeC₆H₄ZnCl for 10 h, a marked increase of the yield was observed (Table 1, entry 13). Further improvement of the yield was carried out by changing the reaction temperature from 120 to 100 °C (both are bath temperature) (Table 1, entry 14). It was noted that decreasing the catalyst loading led to yield decrease (Table 1, entry 15). In the reaction, the presence of lithium ion seems to be important. If the zinc reagent used in the reaction was prepared from *p*-

Received: March 17, 2014 Published: April 23, 2014

Table 1. Screening of Catalysts and Solvents in the Reaction of p-MeOC₆H₄F with p-MeC₆H₄ZnCl^{*a*}

^{*a*}Unless otherwise specified, the reactions were carried out on a 0.5 mmol scale according to the conditions indicated by the above equation; p-MeC₆H₄ZnCl was prepared from p-MeC₆H₄Li and ZnCl₂; 2.5 equiv of p-MeC₆H₄ZnCl was employed. ^{*b*}1.5 equiv of p-MeC₆H₄ZnCl was employed. ^{*c*}2.5 equiv of p-MeC₆H₄ZnCl was added in two portions. 1.5 equiv of p-MeC₆H₄ZnCl was added at first, after stirring for 10 h an additional 1 equiv of p-MeC₆H₄ZnCl was added. ^{*d*}The reaction was carried out at 100 °C. ^{*e*}5 mol % of Ni(PCy₃)₂Cl₂ was employed. ^{*f*}The p-MeC₆H₄ZnCl was prepared from p-MeC₆H₄MgBr and ZnCl₂. ^{*g*}2 equiv of LiCl was added.

MeC₆H₄MgBr and ZnCl₂, the product yield fell remarkably whether or not the zinc reagent was add in one or two portions (Table 1, entries 16 and 17). However, 2 equiv of LiCl additive evidently improved the reaction result (Table 1, entry 18). A similar phenomenon was observed by other groups.^{4g,10a} The low reactivity of the zinc reagent prepared from a Grignard reagent and ZnCl₂ might be due to aggregation of the arylzinc reagent with the coproduct MgCl₂. The role of LiCl additive might include (i) to break the aggregation mentioned above and (ii) to enhance the elimination ability of fluorine through acting as a Lewis acid and forming a strong Li-F bond.^{4a,g,10} In addition, Ni(PCy₃)₂Cl₂ was reported to be an effective catalyst for aryl-O bond activation.¹¹ However, no aryl-OMe activation product was obtained under the screening conditions. We also examined the solvent effect by employing different solvents in the reaction, including a 1:2 mixture of THF and NMP, dioxane, toluene, and THF and an equivalent mixture of THF and toluene or dioxane. However, the results showed that each of these solvents was less effective than a 1:1 mixture of THF and NMP (Table 1, entries 19-24).

Next, the scope of aryl fluorides was tested using p-MeC₆H₄ZnCl as the nucleophilic reagent under the optimized

conditions (Table 2). Reaction of both 4-fluoro-1,1'-biphenyl and 1-fluoronaphthalene with p-MeC₆H₄ZnCl gave excellent

Table 2. Nickel-Catalyzed Coupling of Aryl or Heteroaryl
Fluorides with p -MeC ₆ H ₄ ZnCl ^a

А	rF + ZnCl	Ni(PCy ₃) ₂ Cl ₂ (10 mol%) THF/NMP (1:1) 100 °C, 20 h	Ar
Entry	ArF	Product	Yield (%)
1	Ph-	Ph-	95
2	F		99
3	MeO F	MeO	90
4^b	Me ₂ N-F	Me ₂ N-	75
5	о р́с-{F	Ph	88
6	EtOOC-	EtOOC	81
7	Et ₂ NOC		98
8	COPh		89
9	COOMe		86
10 ^c	F HC=NCHPh ₂	СНО	93
11 ^d	∕F	$ = \mathbb{N} - \mathbb{N}$	99
12 ^d	F		99
13 ^e	MeO-F	MeO-	90

^{*a*}The reactions were carried out on a 0.5 mmol scale according to the conditions indicated by the above equation unless otherwise specified; *p*-MeC₆H₄ZnCl was prepared from *p*-MeC₆H₄Li and ZnCl₂. 1.5 equiv of *p*-MeC₆H₄ZnCl was added into the reaction system and reacted for 10 h; an additional 1 equiv of *p*-MeC₆H₄ZnCl was added. ^{*b*}Reaction was carried out at 120 °C. ^{*c*}3.0 equiv of *p*-MeC₆H₄ZnCl was added in one portion, and reaction was run at 80 °C. ^{*d*}2.5 equiv of *p*-MeC₆H₄ZnCl was added, and the reaction was run for 12 h. ^{*e*}The reaction was carried out on a 5 mmol scale.

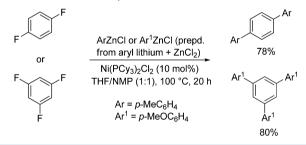
yields (Table 2, entries 1 and 2). Deactivated aryl fluorides such as p-FC₆H₄OMe and m-FC₆H₄OMe also gave excellent results (Table 1, entries 13 and 14, and Table 2, entry 3). However, p-FC₆H₄NMe₂ resulted in relatively low yield (Table 2, entry 4). This is ascribed to strongly deactivated action of the amino group. A series of electron-withdrawing group substituted fluorobenzenes showed good reactivity (Table 2, entries 5–10), each giving high product yield. The high reactivity of the electron-poor aryl fluorides is because electron-withdrawing

Table 3. Nickel-Catalyzed Coupling of Aryl Fluorides	s with Arylzinc/Alkylzinc Reagents ^a
--	---

$R_{U}^{fi} + R^{1}ZnCI \xrightarrow{\text{Ni}(\text{PCy}_{3})_{2}Cl_{2} (10 \text{ mol}\%)}_{\text{THF/NMP} (1:1), 100 °C, 20 \text{ h}} R_{U}^{fi}$									
Entry	ArF	R ¹ ZnCl	Product	Yield (%)	Entry	ArF	R ¹ ZnCl	Product	Yield (%)
1	1-fluoronaphthalene	<i>p</i> -MeOC ₆ H ₄ ZnCl	OMe	84	12 ^b	2-fluoropyridine	p-CF ₃ C ₆ H ₄ ZnCl		93
			OMe		13 ^b	3-fluoropyridine	p-CF ₃ C ₆ H ₄ ZnCl		76
2	p-PhC(O)C ₆ H ₄ F	<i>p</i> -MeOC ₆ H ₄ ZnCl		58	14	p-MeOC ₆ H₄F	o-MeC ₆ H ₄ ZnCl	MeO-	75
3	o-MeOC(O)C ₆ H ₄ F	<i>p</i> -MeOC ₆ H ₄ ZnCl	Ph	70	15	2-fluoropyridine	o-MeC ₆ H₄ZnCl		94
4	o-PhC(O)C ₆ H ₄ F	p-MeOC₀H₄ZnCl	COOMe	72	16	<i>p</i> -MeOC ₆ H ₄ F	(1-naphthyl)ZnCl	мео	13
5	<i>p</i> -Et₂NC(O)C ₆ H₄F	<i>p</i> -MeOC₀H₄ZnCl	OMe	97	17 ^b	2-fluoropyridine	(1-naphthyl)ZnCl		92
			Et ₂ N O OMe		18	o-PhC(O)C ₆ H₄F	(2-furyl)ZnCl	COPh	91
6 ^{<i>b</i>}	<i>p</i> -CF ₃ C ₆ H ₄ F	<i>p</i> -MeOC ₆ H ₄ ZnCl	F ₃ C	90	19	p-CF ₃ C ₆ H ₄ F	(2-furyl)ZnCl	F ₃ C	53
7	o-MeC ₆ H ₄ F	<i>p</i> -MeOC ₆ H₄ZnCl	ОМе	30	20	2-fluoropyridine	(2-furyl)ZnCl		86
8^b	<i>p</i> -MeOC ₆ H ₄ F	<i>p</i> -Me ₂ NC ₆ H ₄ ZnCl	NMe ₂	96	21	o-PhC(O)C ₆ H ₄ F	PhCH ₂ ZnCl	Ph	88
			MeO		22	2-fluoropyridine	PhCH ₂ ZnCl		92
9 ^b	1-fluoronaphthalene	<i>p</i> -Me ₂ NC ₆ H ₄ ZnCl		93	23 ^d	p-PhC(O)C ₆ H ₄ F	CH ₃ ZnCl	Me	81
10 ^{<i>b,c</i>}	o-MeOC(O)C ₆ H ₄ F	<i>p</i> -Me₂NC ₆ H₄ZnCl		80	24 ^d	o-PhC(O)C ₆ H₄F	CH ₃ ZnCl	O Me	99
11 ^{b,c}	p-Et2NC(O)C6H4F	<i>p</i> -Me₂NC ₆ H₄ZnCl	Et ₂ N	97					

^{*a*}Unless otherwise specified, the reactions were carried out on a 0.5 mmol scale according to the conditions indicated by the above equation; $R^{1}ZnCl$ was prepared from RLi and $ZnCl_{2}$ and was added into the reaction system in two portions; 1.5 equiv was added at first and an additional 1 equiv was added after 10 h. ^{*b*}2.5 equiv of ArZnCl was added in one portion. ^{*c*}Reaction was run at 80 °C. ^{*d*}3 equiv of CH₃ZnCl was added in one portion.

substituents on the aromatic rings are beneficial to the oxidative addition. Ortho-position substituted fluorobenzenes gave comparable results to their para-position partners. Functional groups including C(O)Ph, COOR, CONEt₂, and CH= NCHPh₂ can be tolerated. However, the CH=NCHPh₂ group was converted into a CHO group due to hydrolysis during workup. 2- and 3-fluoropyridines exhibited excellent reactivity when treated with *p*-MeC₆H₄ZnCl in the presence of Ni(PCy₃)₂Cl₂. The arylzinc reagent (2.5 equiv) was added in one portion, and the reaction can be completed in 12 h in almost quantitative yields (Table 2, entries 11 and 12). In addition, we examined reaction of *p*-FC₆H₄OMe with *p*-MeC₆H₄ZnCl on a 5 mmol scale. A yield was obtained similar to that of the 0.5 mmol scale under the same conditions (Table 2, entry 13).


Various zinc reagents were also tested for the couplings. p-MeOC₆H₄ZnCl is a stronger nucleophilic reagent than p-

MeC₆H₄ZnCl. However, it led to lower yields than p-MeC₆H₄ZnCl when reacted with aryl fluorides including 1fluoronaphthalene, p-PhC(O)C₆H₄F, o-MeOC(O)C₆H₄F, and o-PhC(O)C₆H₄F with unestablished reasons (Table 3, entries 1-4). Reaction of p-MeOC₆H₄ZnCl with p-Et₂NC(O)C₆H₄F or p-CF₃C₆H₄F gave excellent results (Table 3, entries 5 and 6). o-MeC₆H₄F exhibited low reactivity upon reaction with p- $MeOC_6H_4ZnCl$ (Table 3, entry 7). This might be due to steric hindrance of he methyl group in o-MeC₆H₄F. p-Me2NC6H4ZnCl showed excellent reactivity toward either electron-rich or electron-poor fluoroarenes (Table 3, entries 8-11). p-CF₃C₆H₄ZnCl showed relatively weak nucleophilicity. It did not react with p-MeOC₆H₄Cl. However, it can couple with 2- or 3-fluoropyridine, forming the desired coupling products in 93% and 76% yields, respectively. Both o-MeC₆H₄ZnCl and (1naphthyl)ZnCl are hindral nucleophiles. Reaction of o-MeC₆H₄ZnCl with p-MeOC₆H₄Cl gave 75% yield of the

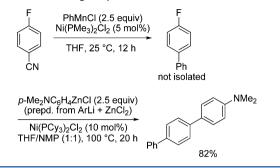
cross-coupling product, while reaction of (1-naphthyl)ZnCl with p-MeOC₆H₄Cl afforded the corresponding product in only 13% yield. However, both zinc reagents resulted in high product yields when reacted with 2-fluoropyridine (Table 3, entries 15 and 17). The reactivity of (2-furyl)ZnCl was also tested. It reacted smoothly with activated fluoroarenes such as o-PhC(O)C₆H₄F and 2-fluoropyridine and gave high product yields, but its reaction with p-CF₃C₆H₄F led to relatively low yield. No reaction took place between (2-furyl)ZnCl and p-MeOC₆H₄Cl. β -Hydrogen-free alkylzinc reagents such as PhCH₂ZnCl and MeZnCl can be used as the nucleophiles in the cross-coupling reactions (Table 3, entries 21-24). p- $PhC(O)C_6H_4F$, o-PhC(O)C_6H_4F, and 2-fluoropyridine were proven to couple with PhCH₂ZnCl or MeZnCl effectively, affording the desired products in excellent yields. Reaction of β hydrogen-containing alkylzinc reagents with an aryl fluoride resulted in a mixture of cross-coupling product and reductive product of the aryl fluoride. This showed that partial β hydrogen elimination occurred during the reaction process. Recently, Love and co-workers carried out Ni(PEt₃)₂Cl₂catalyzed cross-couplings of aryl fluorides with imino directing group and β -hydrogen-containing alkylzinc reagents.⁴ⁱ In the reactions, it seems that the PEt₃ ligand and the imino group together provide a proper coordination environment for the central nickel atom which effectively suppresses β -hydrogen elimination from the reaction intermediates. The preparative method of the organozinc reagents and reaction conditions such as reaction temperature and solvents may also be responsible for the outcomes in comparison with our reaction system.

Di- or trifluorobenzenes were also effectively coupled with arylzinc reagents under the conditions mentioned above (Scheme 1). Reaction of 1,4-difluorobenzene with 5.0 equiv

Scheme 1. Nickel-Catalyzed Cross-Coupling of Multibenzenes with Arylzinc Chlorides

of p-MeC₆H₄ZnCl afforded 1,4-bis(p-tolyl)benzene in 78% yield. Treatment of 1,3,5-trifluorobenzene with 7.5 equiv of p-MeOC₆H₄ZnCl (4.5 equiv of ArZnCl was added at first and then an additional 3 equiv of ArZnCl was added after 10 h) gave 1,3,5-tris(4-methoxyphenyl)benzene in 80% yield. Attempts to selectively prepare a monoarylated product using a smaller amount of arylzinc reagents under the same catalyst and conditions were unsuccessful. This may result from "ring walking" in the product/catalyst complex caused by strong back-donation as indicated by Nakamura et al.4c Two strategies have been used to achieve selective C-F monofunctionalization from polyfluoroarenes. One is ligand design and metal ligand cooperation. The proper ligands can provide the most appropriate coordination environment for the metal center, which makes the catalyst complex suppress multisubstitution of polyfluoroarenes caused by ring walking. The other strategy is

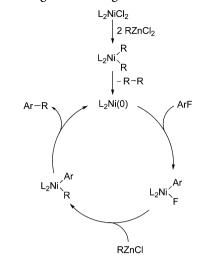
to introduce a suitable directing group onto the fluoride substrate. Indeed, in the presence of a directing group PhC(O) in the fluoride substrate partial C–F bond activation can be carried out by $Ni(PCy_3)_2Cl_2$ (Table 4). Reaction of (2,5-


Table 4. Selective Substitution of (2,5-Difluorophenyl) (phenyl) methanone^{*a*}

F F 1	RZnCl Ni(PCy ₃) ₂ Cl ₂ (10 mol%) THF/NMP (1:1), 100 °C	$ \begin{array}{c} $	R	R O Ph
			yield	(%)
entry	RZnCl	time (h)	2	3
1	<i>p</i> -MeC ₆ H ₄ ZnCl (1.5 equiv)	12	85	0
2	(2-furyl)ZnCl (1.5 equiv)	12	79	0
3 ^b	PhCH ₂ ZnCl (1.5 equiv)	16	52	0
4 ^{<i>c</i>}	PhCH ₂ ZnCl (2.5 equiv)	16	61	0
5^d				

^{*a*}The reactions were carried out on a 0.5 mmol scale according to the conditions indicated by the above equation; R^1ZnCl was prepared from R^1Li and $ZnCl_2$ and was added into the reaction system in one portion. ^{*b*}A mixture of **2** and starting material was obtained, and their ratio was calculated by ¹H NMR integrals. ^{*c*}Products isolated by preparative TLC. ^{*d*}GC yield.

difluorophenyl)(phenyl)methanone with 1.5 equiv of p-MeC₆H₄ZnCl under the same catalyst, solvents, and temperature as above for 12 h afforded an o-arylated product (4-fluoro-4'-methylbiphenyl-2-yl)(phenyl)methanone in 85% yield. No 5-position arylated product or biarylated product was obtained. A similar ortho-arylated product was obtained when (2furyl)ZnCl was employed as the nucleophile (Table 4, entry 2). A small amount of starting material was determined by TLC in the reactions with either *p*-MeC₆H₄ZnCl or (2-furyl)ZnCl. PhCH₂ZnCl showed relatively low reactivity. Reaction of 1.5 equiv of PhCH₂ZnCl with (2,5-difluorophenyl)(phenyl)methanone under the same conditions for 16 h gave a mixture of o-benzylated product (52%) and starting material (41%). Excess PhCH₂ZnCl (2.5 equiv) can lead to an increase of the yield of o-benzylated product (61% yield), but 21% of the starting material still remained (Table 4, entries 3 and 4). MeZnCl exhibited higher reactivity than PhCH₂ZnCl in the reaction with (2,5-difluorophenyl)(phenyl)methanone. The reaction resulted in 91% yield of o-methylated product (5fluoro-2-methylphenyl)(phenyl)methanone, accompanied by 9% yield of bimethylated product (2,5-dimethylphenyl)-(phenyl)methanone (Table 4, entry 5). We also tested other potential directing groups including COOMe and imine group in a difluoride system, but both led to mixtures when they reacted with p-MeC₆H₄ZnCl under the same conditions as above.


Our previous work showed that the C–CN bond of p-FC₆H₄CN can be catalytically cut off and coupled with a manganese reagent.¹² In the present study, we noticed that the C–CN bond and C–F bond can be sequentially activated and coupled in one pot, giving an unsymmetrical terphenyl (Scheme 2). In this reaction, two very inert chemical bonds were respectively activated. The Ni(PMe₃)₂Cl₂ catalyst and excess manganese reagent added in the first step did not affect the following Negishi-type coupling.

A preliminary study of the mechanism for the nickelcatalyzed reaction of aryl fluorides with organozinc reagents was also carried out. The reaction of p-FC₆H₄OMe with p- MeC_6H_4ZnCl was first tested in the absence of Ni(PCy₃)₂Cl₂ in a mixed solvent of THF and NMP (1:1) at 120 °C for 20 h. No cross-coupling product was obtained. Next we tested the reaction of (2-fluorophenyl)(phenyl)methanone with p- $MeOC_6H_4ZnCl$ in the absence of Ni(PCy₃)₂Cl₂ in THF-NMP (1:1) at 100 °C for 12 h. No cross-coupling product can be isolated either. These experimental facts ruled out the possibility of a direct nucleophilic substitution and a coordination-assisted nucleophilic substitution. 1,1-Diphenylethylene additive (an equimolar amount with *p*-FC₆H₄OMe) did not affect the reaction of p-FC₆H₄OMe with p- MeC_6H_4ZnCl catalyzed by $Ni(PCy_3)_2Cl_2$ (10 mol %). It seems that the reaction did not proceed via a free-radical process. Further experiment showed that a mixture of Ni(COD)₂ (10 mol⁻%) and PCy₃ (20 mol⁻%) effectively catalyzed the cross-coupling of p-FC₆H₄OMe with p-MeC₆H₄ZnCl, giving the desired product in 76% yield. Hence, the active catalyst may be a Ni(0) species. Attempts to isolate the oxidative addition product of Ni(0) and aryl fluoride via reaction of $Ni(COD)_2/2PCy_3$ and (2fluorophenyl)(phenyl)methanone failed. Reaction of Ni-(COD)₂/2PCy₃ and 1 equiv of (2-fluorophenyl)(phenyl)methanone was run at 80 °C for 12 h. The ¹⁹F{1H} NMR spectrum of the reaction mixture showed that about 30% of (2fluorophenyl)(phenyl)methanone was transformed to a new species, supposing oxidative addition product. Most (2fluorophenyl)(phenyl)methanone remained. However, after p-MeC₆H₄ZnCl (2.5 equiv) was added into the reaction system and the mixture was stirred at 100 °C for 12 h, the crosscoupling product was obtained in 94% yield. Hence, arylzinc reagent may promote the oxidative addition process. Based on the above experimental facts and the mechanism studies of transition-metal-catalyzed cross-coupling reactions reported in the literature, 1^{13} a possible mechanism is proposed as shown in Scheme 3. Thus, a Ni(0) species is first generated by reaction of $Ni(PCy_3)_2Cl_2$ with the zinc reagent. The Ni(0) species $L_2Ni(0)$ reacts with ArF results in a oxidative addition product $L_2Ni(F)Ar$. Reaction of $L_2Ni(F)Ar$ with a organozinc reagent, RZnCl, affords L2Ni(R)Ar which undergoes reductive elemination to give cross-coupling product and regenerates $L_2Ni(0)$.

CONCLUSION

We have demonstrated that the cross-coupling of aryl fluorides with organozinc reagents can be carried out using Ni- $(PCy_3)_2Cl_2$ as the catalyst. Both activated and deactivated aryl fluorides can be efficiently coupled. Electron-rich and electronScheme 3. Proposed Mechanism for the Coupling of Aryl Fluorides and Organozinc Reagents

poor arylzinc reagents including substituted phenylzinc chlorides, 1-naphthylzinc chloride, and 2-furylzinc chloride and β -hydrogen free alkylzinc reagents such as benzylzinc chloride and methylzinc chloride were proven to be suitable nucleophiles. Pyridyl ring and a range of functional groups involving NMe₂, OMe, CF₃, COOEt, C(O)NEt₂, PhC(O), and imino groups were tolerated. We also confirmed that the PhC(O) group is an effective directing group for the selective activation of C–F bonds in (2,5-difluorophenyl)(phenyl)-methanone molecule, with *o*-arylated or *o*-alkylated products being formed.

EXPERIMENTAL SECTION

The reactions were performed under nitrogen atmosphere. Toluene and 1,4-dioxane were distilled under nitrogen over sodium and degassed prior to use. THF was distilled under nitrogen over sodium/ benzophenone and degassed prior to use. NMP was dried over 4 Å molecular sieves, fractionally distilled under reduced pressure, and stored under nitrogen atmosphere. *N*-(2-Fluorobenzylidene)-1,1diphenylmethanamine¹⁴ and aryllithium reagents¹⁵ were prepared according to literature methods. Other chemicals and solvents were purchased from commercial venders and used as received. NMR spectra were determined on a 300 or 400 MHz NMR spectrometer at room temperature using CDCl₃ as solvent. The chemical shifts of the ¹H and ¹³C NMR spectra were referenced to TMS or internal solvent resonances. High-resolution mass spectra (HR-MS) were acquired in the electron impact mode (EI) using a TOF mass analyzer.

General Procedure for Reaction of Aryl Fluorides with RZnCl. A Schlenk tube was charged with aryl fluoride (0.5 mmol), Ni(PCy₃)₂Cl₂ (34.6 mg, 0.05 mmol), and NMP (1.5 mL). To the solution was added a solution of RZnCl (1.5 mL, 0.5 M in THF, 1.5 mmol) at 25 °C with stirring. After the mixture was stirred at 100 °C (bath temperature) for 10 h, NMP (1 mL) and RZnCl (1 mL, 0.5 M in THF, 1 mmol) were successively added. The resulting mixture was stirred at 100 °C (bath temperature) for an additional 10 h. Water (10 mL) and several drops of acetic acid were successively added into the Schlenk tube. The mixture was extracted with Et₂O (3 × 10 mL). The combined organic phases were dried over Na₂SO₄, concentrated by rotary evaporation, and purified by column chromatography on silica gel.

Spectral Data for the Cross-Coupling Products. 4-Methoxy-4'-methylbiphenyl.¹⁶ Eluent: petroleum ether; yield 92 mg (92%). ¹H NMR: δ 2.36 (s, 3H, CH₃), 3.80 (s, 3H, OCH₃), 6.94 (d, J = 8.7 Hz, 2H, C₆H₄), 7.20 (d, J = 8.2 Hz, 2H, C₆H₄), 7.43 (d, J = 8.1 Hz, 2H, C₆H₄), 7.49 (d, J = 8.6 Hz, 2H, C₆H₄). ¹³C{¹H} NMR: δ 21.2, 55.4, 114.3, 126.7, 128.1, 129.6, 133.9, 136.4, 138.1, 159.1.

4-(4-Methylphenyl)biphenyl.^{5α} Eluent: petroleum ether; yield 116 mg (95%). ¹H NMR: δ 2.40 (s, 3H), 7.25 (d, J = 8.1 Hz, 2H), 7.31–7.37 (m, 1H), 7.44 (t, J = 7.5 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 7.2 Hz, 2H), 7.65 (s, 4H). ¹³C{¹H} NMR: δ 21.3, 127.0, 127.2, 127.4, 127.6, 128.9, 129.7, 137.3, 138.0, 140.0, 140.2, 140.9. 1-p-Tolylnaphthalene. ¹⁶ Eluent: petroleum ether; yield 108 mg

*1-p-Tolylnaphthalene.*¹⁰ Eluent: petroleum ether; yield 108 mg (99%). ¹H NMR: δ 2.45 (s, 3H, CH₃), 7.29 (d, *J* = 8.1 Hz, 2H, Ar), 7.38–7.53 (m, 6H, Ar), 7.83 (d, *J* = 8.1 Hz, 1H, Ar), 7.90 (t, *J* = 8.1 Hz, 2H, Ar). ¹³C{¹H} NMR: δ 21.4, 125.5, 125.9, 126.1, 126.3, 127.0, 127.6, 128.4, 129.1, 130.1, 131.9, 134.0, 137.1, 138.0, 140.4.

3-Methoxy-4-*methylbiphenyl.*¹⁷ Eluent: petroleum ether; yield 90 mg (90%). ¹H NMR: δ 2.39 (s, 3H, CH₃), 3.85 (s, 3H, OCH₃), 6.87 (dd, J = 2.4, 8.1 Hz, 1H, C₆H₄), 7.11 (s, 1H, C₆H₄), 7.16 (d, J = 7.8 Hz, 1H, C₆H₄), 7.24 (d, J = 7.8 Hz, 2H, C₆H₄), 7.33 (t, J = 7.9 Hz, 1H, C₆H₄), 7.48 (d, J = 8.1 Hz, 2H, C₆H₄). ¹³C{¹H} NMR: δ 21.2, 55.4, 112.5, 112.9, 119.6, 127.2, 129.6, 129.8, 137.3, 138.4, 142.9, 160.1.

4'-Methyl-N,N-dimethylbiphenyl-4-amine.¹⁶ Eluent: petroleum ether/ethyl acetate = 100:1; yield 79 mg (75%). ¹H NMR: δ 2.28 (s, 3H, CH₃), 2.88 (s, 6H, NCH₃), 6.70 (d, J = 8.7 Hz, 2H, C₆H₄), 7.11 (d, J = 7.8 Hz, 2H, C₆H₄), 7.35–7.41 (m, 4H, C₆H₄). ¹³C{¹H} NMR: δ 21.2, 40.8, 113.0, 126.3, 127.7, 129.5, 135.7, 138.5, 149.9. (4'-Methylbiphenyl-4-yl)(phenyl)methanone.¹⁸ Eluent: petroleum

(4'-Methylbiphenyl-4-yl)(phenyl)methanone.¹⁶ Eluent: petroleum ether/ethyl acetate = 100:1; yield 120 mg (88%). ¹H NMR: δ 2.31 (s, 3H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.36–7.51 (m, 5H, C₆H₄), 7.58 (d, *J* = 8.4 Hz, 2H), 7.71–7.79 (m, 4H). ¹³C{¹H} NMR: δ 21.3, 126.8, 127.2, 128.4, 129.8, 130.1, 130.8, 132.4, 136.1, 137.2, 138.0, 138.3, 145.3, 196.4.

*Ethyl 4'-Methylbiphenyl-4-carboxylate.*¹⁸ Eluent: petroleum ether/ethyl acetate = 120:1; yield 97 mg (81%). ¹H NMR: δ 1.32 (t, *J* = 7.2 Hz, 3H), 2.32 (s, 3H), 4.31 (q, *J* = 7.2 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 8.01 (d, *J* = 8.4 Hz, 2H). ¹³C{¹H} NMR: δ 14.5, 21.3, 61.0, 126.9, 127.2, 129.1, 129.8, 130.2, 137.3, 138.2, 145.6, 166.7.

N,*N*-Diethyl-4'-methylbiphenyl-4-carboxamide.¹⁸ Eluent: petroleum ether/ethyl acetate = 8:1; yield 131 mg (98%). ¹H NMR: δ 1.18 (b, 6H), 2.38 (s, 3H), 3.32 (b, 2H), 3.52 (b, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 1³C{¹H} NMR: δ 12.8, 14.2, 21.0, 39.2, 43.2, 126.7, 126.8, 129.5, 135.6, 137.4, 141.8, 171.0.

(4'-Methylbiphenyl-2-yl)(phenyl)methanone.¹⁹ Eluent: petroleum ether/ethyl acetate = 100:1; yield 121 mg (89%). ¹H NMR: δ 2.12 (s, 3H), 6.89 (d, *J* = 7.8 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 7.15 (t, *J* = 7.8 Hz, 2H), 7.26–7.46 (m, 5H), 7.56 (d, *J* = 7.2 Hz, 2H). ¹³C{¹H} NMR: δ 21.1, 126.8, 128.2, 128.7, 128.9, 129.1, 130.0, 130.2, 130.3, 132.9, 137.1, 137.4, 137.5, 139.0, 141.2, 198.8.

Methyl 2-(*p*-tolyl)benzoate.²⁰ Eluent: petroleum ether/ethyl acetate = 120:1; yield 113 mg (86%). ¹H NMR: δ 2.28 (s, 3H), 3.55 (s, 3H), 7.10 (s, 4H), 7.26 (t, J = 6.9 Hz, 2H), 7.36–7.41 (m, 1H), 7.69 (d, J = 6.9 Hz, 1H). ¹³C{¹H} NMR: δ 21.2, 51.9, 127.0, 128.3, 128.9, 129.8, 130.8, 131.0, 131.2, 136.9, 138.4, 142.5, 169.3.

2-(*p*-Tolyl)benzaldehyde.¹⁹ Eluent: petroleum ether/ethyl acetate = 100:1; yield 91 mg (93%). ¹H NMR: δ 2.34 (s, 3H), 7.19 (s, 4H), 7.33–7.40 (m, 2H), 7.53 (dt, *J* = 1.5, 7.5 Hz, 1H), 7.94 (dd, *J* = 1.2, 7.8 Hz, 1H), 9.90 (s, 1H). ¹³C{¹H} NMR: δ 21.3, 127.7, 127.7, 129.3, 130.1, 130.9, 133.6, 133.9, 134.9, 138.2, 146.1, 192.7.

2-p-Tolylpyridine.¹⁶ Eluent: petroleum ether/ethyl acetate = 30:1; yield 84 mg (99%). ¹H NMR: δ 2.38 (s, 3H), 7.11–7.19 (m, 1H), 7.26 (d, *J* = 8.1 Hz, 2H), 7.67 (d, *J* = 3.6 Hz, 2H), 7.88 (d, *J* = 8.1 Hz, 2H), 8.66 (d, *J* = 4.8 Hz, 1H). ¹³C{¹H} NMR: δ 21.2, 120.3, 121.8, 126.8, 129.5, 136.7, 139.0, 149.7, 157.5.

3-p-Tolylpyridine.²¹ Eluent: petroleum ether/ethyl acetate = 30:1; yield 84 mg (99%). ¹H NMR: δ 2.39 (s, 3H), 7.26 (d, J = 7.8 Hz, 2H), 7.28–7.33 (m, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.80–7.84 (m, 1H), 8.55 (dd, J = 1.5, 4.8 Hz, 1H), 8.83 (dd, J = 0.9, 2.4 Hz, 1H). ¹³C{¹H} NMR: δ 20.8, 123.5, 127.0, 129.8, 134.1, 135.0, 136.6, 138.0, 148.2. 1-(4-Methoxyphenyl)naphthalene.^{5a} Eluent: petroleum ether;

1-(4-Methoxyphenyl)naphthalene.³⁴ Eluent: petroleum ether; yield 98 mg (84%). ¹H NMR: δ 3.73 (s, 3H), 6.89 (d, J = 8.6 Hz, 2H), 7.26–7.39 (m, 6H), 7.68–7.83 (m, 3H). ¹³C{¹H} NMR: δ 55.4, 113.8, 125.5, 125.8, 126.0, 126.2, 127.0, 127.5, 128.4, 131.2, 131.9, 133.2, 134.0, 140.0, 159.1. (4'-Methoxybiphenyl-4-yl)(phenyl)methanone.²² Eluent: petroleum ether/ethyl acetate = 8:1; yield 84 mg (58%). ¹H NMR: δ 3.87 (s, 3H), 7.01 (d, J = 8.8 Hz, 2H), 7.50 (d, J = 8 Hz, 2H), 7.58–7.61 (m, 3H), 7.66 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 7.2 Hz, 2H), 7.88 (d, J = 8.4 Hz, 2H). ¹³C{¹H} NMR: δ 55.5, 114.6, 126.5, 128.4, 128.5, 130.1, 130.9, 132.4, 132.5, 135.7, 138.0, 145.0, 160.0, 196.4. Methyl 4'-Methoxybiphenyl-2-carboxylate.¹⁹ Eluent: petroleum

Methyl 4'-*Methoxybiphenyl*-2-*carboxylate*.¹⁹ Eluent: petroleum ether/ethyl acetate = 100:1; yield 85 mg (70%). ¹H NMR: δ 3.65 (s, 3H), 3.81 (s, 3H), 6.92 (d, *J* = 8.7 Hz, 2H), 7.23 (d, *J* = 8.7 Hz, 2H), 7.32–7.37 (m, 2H), 7.45–7.50 (m, 1H), 7.76–7.79 (m, 1H). ¹³C{¹H} NMR: δ 52.0, 55.3, 113.6, 126.8, 129.5, 129.8, 130.8, 131.0, 131.2, 133.7, 142.1, 159.1, 169.4.

(4'-Methoxylbiphenyl-2-yl)(phenyl)methanone.²³ Eluent: petroleum ether/ethyl acetate = 100:1; yield 104 mg (72%). ¹H NMR: δ 3.59 (s, 3H), 6.63 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 7.16 (t, *J* = 7.7 Hz, 2H), 7.27–7.46 (m, SH), 7.55 (d, *J* = 7.5 Hz, 2H). ¹³C{¹H} NMR: δ 55.2, 113.9, 126.7, 128.2, 128.7, 129.97, 130.04, 130.2, 130.4, 132.7, 132.9, 137.5, 139.0, 140.8, 159.1, 199.0.

N,*N*-*Diethyl-4'-methoxybiphenyl-4-carboxamide*.¹⁶ Eluent: petroleum ether/ethyl acetate = 8:1; yield 137 mg (97%). ¹H NMR: δ 1.17 (b, 6H), 3.31 (b, 2H), 3.50 (b, 2H,), 3.79 (s, 3H), 6.94 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H). ¹³C{¹H} NMR: δ 13.0, 14.2, 39.1, 43.0, 55.0, 114.2, 126.4, 126.8, 128.0, 132.7, 135.4, 141.5, 159.4, 171.1.

4-*Trifluoromethyl-4'-methoxybiphenyl.*^{3h} Eluent: petroleum ether; yield 114 mg (90%). ¹H NMR: δ 3.88 (s, 3H), 7.02 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.67 (s, 4H). ¹³C{¹H} NMR: δ 55.5, 114.6, 124.6 (q, *J* = 271.9 Hz), 125.8 (q, *J* = 3.9 Hz), 127.0, 128.5, 128.8 (q, *J* = 32.4 Hz), 132.3, 144.3, 160.0. *4-Methoxy-2'-methylbiphenyl.*¹⁶ Eluent: petroleum ether; yield 74

4-Methoxy-2'-methylbiphenyl.¹⁶ Eluent: petroleum ether; yield 74 mg (75%). ¹H NMR: δ 2.27 (s, 3H), 3.84 (s, 3H), 6.94 (d, *J* = 8.7 Hz, 2H), 7.21–7.26 (m, 6H). ¹³C{¹H} NMR: δ 20.7, 55.4, 113.6, 125.9, 127.1, 130.0, 130.4, 130.4, 134.5, 135.6, 141.7, 158.7.

4'-Methoxy-N,N-dimethylbiphenyl-4-amine.¹⁶ Eluent: petroleum ether/ethyl acetate = 100:1; yield 109 mg (96%). ¹H NMR: δ 2.99 (s, 6H), 3.85 (s, 3H), 6.83 (d, J = 8.7 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 7.45–7.51 (m, 4H). ¹³C{¹H} NMR: δ 40.9, 55.5, 113.2, 114.3, 127.5, 134.1, 149.7, 158.4.

N,*N*-*Dimethyl*-4-(*naphthalen*-1-*yl*)*aniline*.^{3h} Eluent: petroleum ether/ethyl acetate = 100:1; yield 115 mg (93%). ¹H NMR: δ 2.85 (s, 6H), 6.71 (d, *J* = 8.7 Hz, 2H), 7.25–7.38 (m, 6H), 7.65 (d, *J* = 7.9 Hz, 1H), 7.73 (d, *J* = 8.7 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 1H). ¹³C{¹H} NMR: δ 40.7, 112.5, 125.6, 125.7, 125.8, 126.5, 126.9, 127.0, 128.4, 129.0, 131.0, 132.1, 134.1, 140.6, 149.9.

*Methyl 4'-(Dimethylamino)biphenyl-2-carboxylate.*²⁰ Eluent: petroleum ether/ethyl acetate = 60:1; yield 102 mg (80%). ¹H NMR: δ 2.97 (s, 6H), 3.68 (s, 3H), 6.75 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 7.31 (t, J = 7.4 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H). ¹³C{¹H} NMR: δ 40.9, 52.0, 112.2, 126.2, 129.1, 129.2, 129.6, 130.6, 130.9, 131.1, 142.4, 149.9, 170.0.

4'-(Dimethylamino)-N,N-diethylbiphenyl-4-carboxamide.²⁰ Eluent: petroleum ether/ethyl acetate = 4:1; yield 144 mg (97%). ¹H NMR: δ 1.19 (b, 6H), 3.00 (s, 6H), 3.37 (b, 2H), 3.48 (b, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.2 Hz, 2H). ¹³C{¹H} NMR: δ 13.0, 14.0, 39.4, 40.5, 43.1, 112.8, 126.0, 126.9, 127.7, 128.2, 134.7, 142.1, 150.3, 171.5.

2-(4-(*Trifluoromethyl*)*phenyl*)*pyridine*.²⁴ Eluent: petroleum ether/ ethyl acetate = 30:1; yield 104 mg (93%). ¹H NMR: δ 7.28–7.32 (m, 1H), 7.72–7.83 (m, 4H), 8.11 (d, *J* = 8.1 Hz, 2H), 8.73 (d, *J* = 4.8 Hz, 1H). ¹³C{¹H} NMR: δ 120.9, 123.1, 124.4 (q, *J* = 272.2 Hz), 125.8 (q, *J* = 3.9 Hz), 127.3, 130.9 (q, *J* = 32.4 Hz), 137.1, 142.8, 150.1, 156.0. *3-(4-(Trifluoromethyl)phenyl)pyridine*.²⁵ Eluent: petroleum ether/

*3-(4-(11fluoromethyl)phenyl)pyridine.*²⁵ Eluent: petroleum ether/ ethyl acetate = 8:1; yield 84 mg (76%). ¹H NMR: δ 7.41–7.47 (m, 1H), 7.70 (d, *J* = 8.1 Hz, 2H), 7.75 (d, *J* = 8.1 Hz, 2H), 7.91 (d, *J* = 6 Hz, 1H), 8.67 (s, 1H), 8.88 (s, 1H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 115.8, 123.9, 124.2 (q, *J* = 272.2 Hz), 126.2 (q, *J* = 3.8 Hz), 127.6, 130.4 (q, *J* = 32.6 Hz), 134.7, 135.5, 141.4, 148.3, 149.3.

2-o-Tolylpyridine.²⁶ Eluent: petroleum ether/ethyl acetate = 30:1; yield 80 mg (94%). ¹H NMR: δ 2.40 (s, 3H), 7.26–7.34 (m, 3H), 7.47

(d, J = 8.1 Hz, 2H), 7.83 (d, J = 8.1 Hz, 1H), 8.55 (d, J = 3.3 Hz, 1H), 8.83 (d, J = 1.5 Hz, 1H). ¹³C{¹H} NMR: δ 20.3, 121.6, 124.2, 125.9, 128.3, 129.7, 130.8, 135.8, 136.2, 140.5, 149.2, 160.1. 2-(Naphthalen-1-yl)pyridine.²⁷ Eluent: petroleum ether/ethyl

2-(*Naphthalen-1-yl*)*pyridine*.²⁷ Eluent: petroleum ether/ethyl acetate = 30:1; yield 94 mg (92%). ¹H NMR: δ 7.24–7.29 (m, 1H), 7.41–7.47 (m, 2H), 7.49–7.59 (m, 3H), 7.75 (dt, *J* = 1.8, 7.8 Hz, 1H), 7.87 (d, *J* = 9 Hz, 2H), 8.04–8.09 (m, 1H), 8.76–8.78 (m, 1H). ¹³C{¹H} NMR: δ 122.0, 125.1, 125.3, 125.6, 125.9, 126.5, 127.5, 128.4, 128.9, 131.2, 134.0, 136.4, 138.5, 149.5, 159.3.

(2-(Furan-2-yl)phenyl)(phenyl)methanone. Eluent: petroleum ether/ethyl acetate = 100:1; pale yellow liquid, yield 113 mg (91%). ¹H NMR: δ 6.26 (s, 1H), 6.42 (d, *J* = 3.2 Hz, 1H), 7.23 (s, 1H), 7.34–7.40 (m, 4H), 7.48–7.55 (m, 2H), 7.72–7.77 (m, 3H) . ¹³C{¹H} NMR: δ 108.8, 111.7, 126.7, 127.5, 128.3, 128.5, 129.1, 129.8, 130.1, 133.2, 137.0, 137.2, 142.8, 151.9, 198.5. HR-MS: *m*/*z* 249.0916 [M + H]⁺, calcd for C₁₇H₁₃O₂ 249.0903.

2-(4-(*Trifluoromethyl*)*phenyl*)*furan*.²⁸ Eluent: petroleum ether; yield 56 mg (53%). ¹H NMR: δ 6.48–6.50 (m, 1H), 6.74 (d, J =3.3 Hz, 1H), 7.50 (s, 1H), 7.61 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.2 Hz, 2H). ¹³C{¹H} NMR: δ 107.1, 112.1, 123.9, 124.4 (q, J = 272 Hz), 125.8 (q, J = 3.9 Hz), 129.1 (q, J = 33.1 Hz), 134.0, 143.2, 152.7. 2-(*Furan-2-yl*)*pyridine*.²⁹ Eluent: petroleum ether/ethyl acetate =

2-(*Furan-2-yl)pyridine*.²⁷ Eluent: petroleum ether/ethyl acetate = 30:1; yield 125 mg (86%). ¹H NMR: δ 6.50–6.51 (m, 1H), 7.04 (d, *J* = 3.3 Hz, 1H), 7.09–7.13 (m, 1H), 7.50 (d, *J* = 0.9 Hz, 1H), 7.65–7.68 (m, 2H), 8.57 (d, *J* = 4.8 Hz, 1H). ¹³C{¹H} NMR: δ 108.7, 112.2, 118.7, 122.0, 136.7, 143.4, 149.5, 149.7, 153.7.

(2-Benzylphenyl)(phenyl)methanone.³⁰ Eluent: petroleum ether/ ethyl acetate = 30:1; yield 120 mg (88%). ¹H NMR: δ 3.96 (s, 2H), 6.97–6.99 (m, 3H), 7.04–7.08 (m, 2H), 7.13–7.20 (m, 3H), 7.26– 7.31 (m, 3H), 7.42 (t, J = 7.6 Hz, 1H), 7.62 (d, J = 7.2 Hz, 2H). ¹³C{¹H} NMR: δ 38.9, 125.7, 126.1, 128.36, 128.39, 128.7, 129.3, 130.2, 130.4, 130.9, 133.2, 137.7, 138.9, 140.2, 140.5, 198.6.

2-Benzylpyridine.³¹ Eluent: petroleum ether/ethyl acetate = 30:1; yield 78 mg (92%). ¹H NMR: δ 4.06 (s, 2H), 6.96–7.00 (m, 2H), 7.08–7.22 (m, 5H), 7.41–7.47 (m, 1H), 8.44 (d, J = 4.6 Hz, 1H). ¹³C{¹H} NMR: δ 44.8, 121.3, 123.1, 126.4, 128.6, 129.2, 136.5, 139.5, 149.4, 161.0.

*Phenyl(p-tolyl)methanone.*³² Eluent: petroleum ether/ethyl acetate = 100:1; yield 79 mg (81%). ¹H NMR: δ 2.34 (s, 3H), 7.18 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.67-7.70 (m, 2H). ¹³C{¹H} NMR: δ 21.7, 128.3, 129.1, 130.0, 130.4, 132.2, 134.9, 138.0, 143.3, 196.6. *Phenyl(o-tolyl)methanone.*³³ Eluent: petroleum ether/ethyl ac-

*Phenyl(o-tolyl)methanone.*⁵⁵ Eluent: petroleum ether/ethyl acetate = 100:1; yield 97 mg (99%). ¹H NMR: δ 2.24 (s, 3H), 7.12–7.23 (m, 3H), 7.27–7.32 (m,1H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.69–7.72 (m, 2H). ¹³C{¹H} NMR: δ 20.1, 125.3, 128.5, 128.6, 130.2, 130.3, 131.1, 133.2, 136.8, 137.9, 138.8, 198.7.

1,4-Di(p-methylphenyl)benzene.^{5a} Eluent: petroleum ether; yield 101 mg (78%). ¹H NMR: δ 2.40 (s, 6H), 7.26 (d, J = 7.8 Hz, 4H), 7.53 (d, J = 7.9 Hz, 4H), 7.64 (s, 4H). ¹³C{¹H} NMR: δ 21.3, 127.0, 127.4, 129.7, 137.2, 138.1, 139.9.

1,3,5-Tris(4'-methoxyphenyl)benzene.³² Eluent: petroleum ether/ ethyl acetate = 20:1; yield 159 mg (80%). ¹H NMR: δ 3.83 (s, 9H), 6.99 (d, J = 8.7 Hz, 6H), 7.60 (d, J = 8.7 Hz, 6H), 7.64 (s, 3H). ¹³C{¹H} NMR: δ 55.5, 114.4, 124.2, 128.5, 134.0, 142.0, 159.4.

(4-*Fluoro-4' -methylbiphenyl-2-yl)(phenyl)methanone*. Eluent: petroleum ether/ethyl acetate = 100:1; light yellow oil, yield 123 mg (85%). ¹H NMR: δ 2.15 (s, 3H), 6.91 (d, *J* = 8 Hz, 2H), 7.03 (d, *J* = 8 Hz, 2H), 7.09–7.18 (m, 2H), 7.21 (t, *J* = 7.8 Hz, 2H), 7.33–7.37 (m, 2H), 7.58 (d, *J* = 7.2 Hz, 2H). ¹³C{¹H} NMR: δ 21.1, 115.6 (d, *J* = 22.9 Hz), 117.3 (d, *J* = 21.2 Hz), 128.3, 128.9, 129.2, 130.1, 132.0 (d, *J* = 7.7 Hz), 133.3, 136.3, 136.8, 137.26, 137.29, 140.5 (d, *J* = 6.3 Hz), 161.6 (d, *J* = 249.5 Hz), 197.4. ¹⁹F{¹H} NMR: δ –115.12. HR-MS: *m*/*z* 290.1101 [M]⁺, calcd for C₂₀H₁₅FO 290.1107.

(5-Fluoro-2-(furan-2-yl)phenyl)(phenyl)methanone. Eluent: petroleum ether/ethyl acetate = 100:1; light yellow oil, yield 105 mg (79%). ¹H NMR: δ 6.24 (dd, J = 1.8, 3.4 Hz, 1H), 6.34–6.35 (m,1H), 7.10 (dd, J = 2.6, 8.4 Hz, 1H), 7.20–7.25 (m, 2H), 7.35–7.39 (m, 2H), 7.48–7.53 (m, 1H), 7.70 (dd, J = 5.2, 8.7 Hz, 1H), 7.73–7.76

Featured Article

(m, 2H). ¹³C{¹H} NMR: δ 108.6, 111.7, 115.4 (d, *J* = 23.3 Hz), 117.3 (d, *J* = 21.8 Hz), 125.5 (d, *J* = 3.5 Hz), 128.6, 128.9 (d, *J* = 8 Hz), 129.8, 133.6, 136.6, 138.8 (d, *J* = 6.3 Hz), 142.7, 151.0, 163.8 (d, *J* = 251.3 Hz), 196.8. ¹⁹F{¹H} NMR: δ –113.17. HR-MS: *m*/*z* 266.0737 [M]⁺, calcd for C₁₇H₁₁FO₂ 266.0743.

(2-Benzyl-5-fluorophenyl)(phenyl)methanone. Eluent: petroleum ether/ethyl acetate = 100:1; light yellow oil, yield 89 mg (61%). ¹H NMR (400 MHz, CDCl₃): δ 3.99 (s, 2H), 6.99–7.06 (m, 3H), 7.08–7.13 (m, 2H), 7.14–7.19 (m, 2H), 7.21–7.25 (m, 1H), 7.41 (t, J = 7.6 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.70–7.73 (m, 2H). ¹³C{¹H} NMR: δ 38.2, 115.4 (d, J = 22.7 Hz), 117.3 (d, J = 20.9 Hz), 126.3, 128.5, 128.6, 129.2, 130.3, 132.6 (d, J = 7.6 Hz), 133.7, 135.9 (d, J = 3.5 Hz), 137.1, 140.3, 140.4 (d, J = 5.9 Hz), 160.6 (d, J = 248.1 Hz), 197.2. ¹⁹F{¹H} NMR: δ –116.26. HR-MS: m/z 290.1057 [M]⁺, calcd for C₂₀H₁₆FO 290.1107.

N,*N*-Dimethyl-[1,1':4',1"-terphenyl]-4-amine.³⁴ Eluent: petroleum ether/ethyl acetate = 100:1; yield 112 mg (82%). ¹H NMR: δ 3.00 (s, 6H), 6.83 (d, *J* = 8.1 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H,), 7.63 (s, 6H). ¹³C{¹H} NMR: δ 40.9, 113.2, 126.7, 127.1, 127.2, 127.5, 127.8, 128.9, 139.0, 140.3, 141.1.

ASSOCIATED CONTENT

Supporting Information

Copies of ¹H, ¹³C, and ¹⁹F NMR spectra of the cross-coupling products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: zxwang@ustc.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This research was supported by the National Basic Research Program of China (Grant No. 2009CB825300) and the National Natural Science Foundation of China (Grant No. 21172208).

REFERENCES

(1) (a) Kiplingers, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. **1994**, 94, 373. (b) Torrens, H. Coord. Chem. Rev. **2005**, 249, 1957. (c) Amii, H.; Uneyama, K. Chem. Rev. **2009**, 109, 2119. (d) Sun, A. D.; Love, J. A. Dalton Trans. **2010**, 39, 10362. (e) Kuehnel, M. F.; Lentz, D.; Braun, T. Angew. Chem., Int. Ed. **2013**, 52, 3328. (f) Mazurek, U.; Schwarz, H. Chem. Commun. **2003**, 1321. (g) Braun, T.; Perutz, R. N. Chem. Commun. **2002**, 2749. (h) Jones, W. D. Dalton Trans. **2003**, 3991. (i) Richmond, T. G. Top. Organomet. Chem. **1999**, 3, 243.

(2) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2007. (3) (a) Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, 50, C12. (b) Jin, Z.; Li, Y.-J.; Ma, Y.-Q.; Qiu, L.-L.; Fang, J.-X. Chem.-Eur. J. 2012, 18, 446. (c) Ackermann, L.; Born, R.; Spatz, J. H.; Meyer, D. Angew. Chem., Int. Ed. 2005, 44, 7216. (d) Böhm, V. P. W.; Gstöttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew. Chem., Int. Ed. 2001, 40, 3387. (e) Wang, J.-R.; Manabe, K. Org. Lett. 2009, 11, 741. (f) Mongin, F.; Mojovic, L.; Guillamet, B.; Trécourt, F.; Quéguiner, G. J. Org. Chem. 2002, 67, 8991. (g) Yoshikai, N.; Mashima, H.; Nakamura, E. J. Am. Chem. Soc. 2005, 127, 17978. (h) Xie, L.-G.; Wang, Z.-X. Chem.-Eur. J. 2010, 16, 10332. (i) Guo, W.-J.; Wang, Z.-X. J. Org. Chem. 2013, 78, 1054. (j) Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646. (k) Terao, J.; Watabe, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 3656. (1) Mo, Z.; Zhang, Q.; Deng, L. Organometallics 2012, 31, 6518. (4) (a) Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256. (b) Andrei, D.; Wnuk, S. F. J. Org. Chem. 2006, 71, 405. (c) Nakamura, Y.; Yoshikai, N.; Ilies, L.;

Nakamura, E. Org. Lett. 2012, 14, 3316. (d) Wang, T.; Alfonso, B. J.; Love, J. A. Org. Lett. 2007, 9, 5629. (e) Wang, T.; Keyes, L.; Patrick, B. O.; Love, J. A. Organometallics 2012, 31, 1397. (f) Sun, A. D.; Leung, K.; Restivo, A. D.; LaBerge, N. A.; Takasaki, H.; Love, J. A. Chem.— Eur. J. 2014, 20, 3162. (g) Ohashi, M.; Doi, R.; Ogoshi, S. Chem.—Eur. J. 2014, 20, 2040. (h) Yang, X.; Sun, H.; Zhang, S.; Li, X. J. Organomet. Chem. 2013, 723, 36. (i) Sun, A. D.; Leung, K.; Restivo, A. D.; LaBerge, N. A.; Takasaki, H.; Love, J. A. Chem.—Eur. J. 2014, 20, 3162.

(5) (a) Tobisu, M.; Xu, T.; Shimasaki, T.; Chatani, N. J. Am. Chem.
Soc. 2011, 133, 19505. (b) Yu, D.; Shen, Q.; Lu, L. J. Org. Chem. 2012,
77, 1798. (c) Liu, J.; Robins, M. J. Org. Lett. 2005, 7, 1149. (d) Ohashi,
M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 443.
(e) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128,
15964. (f) Sun, A. D.; Love, J. A. Org. Lett. 2011, 13, 2750.

(6) (a) Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001,
2254. (b) Kim, Y. M.; Yu, S. J. Am. Chem. Soc. 2003, 125, 1696.
(c) Bahmanyar, S.; Borer, B. C.; Kim, Y. M.; Kurtz, D. M.; Yu, S. Org. Lett. 2005, 7, 1011.

(7) Jin, G.; Zhang, X.; Cao, S. Org. Lett. 2013, 15, 3114.

(8) (a) Zhu, F.; Wang, Z.-X. Adv. Synth. Catal. 2013, 355, 3694.
(b) Dehe, D.; Munstein, I.; Reis, A.; Thiel, W. R. J. Org. Chem. 2011, 76, 1151.

(9) Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. J. Am. Chem. Soc. 2008, 130, 12214.

(10) (a) Shirakawa, E.; Tamakuni, F.; Kusano, E.; Uchiyama, N.; Konagaya, W.; Watabe, R.; Hayashi, T. *Angew. Chem., Int. Ed.* **2014**, *53*, 521. (b) Duan, H.; Meng, L.; Bao, D.; Zhang, H.; Li, Y.; Lei, A. *Angew. Chem., Int. Ed.* **2010**, *49*, 6387.

(11) (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(b) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43, 1486.
(c) Wang, C.; Ozaki, T.; Takita, R.; Uchiyama, M. Chem.—Eur. J. 2012, 18, 3482. (d) Dankwardt, J. W. Angew. Chem., Int. Ed. 2004, 43, 2428. (e) Guan, B.-T.; Xiang, S.-K.; Wu, T.; Sun, Z.-P.; Wang, B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Chem. Commun. 2008, 1437. (f) Tobisu, M.; Shimasaki, T.; Chatani, N. Angew. Chem., Int. Ed. 2008, 47, 4866.

(12) Liu, N.; Wang, Z.-X. Adv. Synth. Catal. 2012, 354, 1641.

(13) (a) Echavarren, A. M.; Cárdenas, D. J. In *Metal-Catalyzed Cross-Coupling Reactions*, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH, Weinheim, 2004; Vol. 1 pp 1–40. (b) van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. *Chem. Rev.* 2000, 100, 2741.

(14) Green, C.; Gruss, U.; Hagele, G.; Hudson, H. R.; Lindblom, L.; Planka, M. Phosphorus, Sulfur Silicon **1996**, 113, 179.

(15) (a) Gilman, H.; Zoellner, E. A.; Selby, W. M. J. Am. Chem. Soc.
1933, 55, 1252. (b) Bernard, B.; Marc, J.; Miguel, R.-M. Synthesis
1980, 11, 926. (c) Pereira, R.; Furst, A.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A. R. Org. Biomol. Chem. 2006, 4, 4514.
(d) Jin, L.; Xin, J.; Huang, Z.; He, J.; Lei, A. J. Am. Chem. Soc. 2010, 132, 9607. (e) Wakefield, B. J. Organolithium Methods; Academic Press: London, 1988.

(16) Liu, N.; Wang, Z.-X. J. Org. Chem. 2011, 76, 10031.

(17) Xie, L.-G.; Wang, Z.-X. Angew. Chem., Int. Ed. 2011, 50, 4901.

(18) Liu, N.; Wang, L.; Wang, Z.-X. Chem. Commun. 2011, 47, 1598.

(19) Takashi, M.; Yoshiaki, S.; Masami, S.; Tsutomu, F. J. Org. Chem. 2005, 70, 2191.

(20) Leleu, A.; Fort, Y.; Schneider, R. Adv. Synth. Catal. 2006, 348, 1086.

(21) Chen, G.-J.; Huang, J.; Gao, L.-X.; Han, F.-S. Chem.—Eur. J. 2011, 17, 4038.

(22) Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P. Org. Lett. 2005, 7, 4871.

(23) Sapountzis, I.; Lin, W.-W.; Kofink, C. C.; Despotopoulou, C.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 1654.

(24) Ackermann, L.; Potukuchi, H. K.; Kapdi, A. R.; Schulzke, C. *Chem.—Eur. J.* **2010**, *16*, 3300.

(25) Denmark, S. E.; Smith, R. C.; Chang, W.-T. T.; Muhuhi, J. M. J. Am. Chem. Soc. 2009, 131, 3104.

(26) Doherty, S.; Knight, J. G.; McGrady, J. P.; Ferguson, A. M.; Ward, N. A. B.; Harrington, R. W.; Clegg, W. Adv. Synth. Catal. 2010, 352, 201.

(27) Iannazzo, L.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C.; Gandon, V. J. Org. Chem. 2011, 18, 3283.

(28) Denmark, S. E.; Baird, J. D.; Regens, C. S. J. Org. Chem. 2008, 73, 1440.

(29) Kumar, M. R.; Park, K.; Lee, S. Adv. Synth. Catal. 2010, 352, 3255.

(30) Singh, A.; Andrews, L. J.; Keefer, R. M. J. . Am. Chem. Soc. 1962, 84, 1179.

(31) Benkeser, R. A.; Holton, D. S. J. Am. Chem. Soc. 1951, 73, 5861.

(32) Lee, S. W.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P. H. J. Org. Chem. 2004, 69, 4852.

(33) Xu, H.-H.; Ekoue-Kovi, K.; Wolf, C. S. J. Org. Chem. 2008, 73, 7638.

(34) Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482.